Dokumentaation puute:
ohjelmistokehityksen Akilleen
kantapaa

22.3.2019

Yritys saa ohjelmistotilauksen. Toiminnallisista vaatimuksista keskusteltaessa huomataan, ettd moni
ohjelmiston tarvitsema komponentti on jo toteutettu aiemmissa projekteissa, ja niitd voidaan hyddyntaa.
Luvataan siis lyhyt toimitusaika — tuotehan on jo kaytannossa valmis. Kun aiemmin tehtyja osasia aletaan
kayda lavitse, huomataan, ettei yhdellekaan ole kirjoitettu kayttéohjetta eikd dokumentaatiota, koodia ei ole
kommentoitu juuri lainkaan ja tekijat ovat vaihtaneet firmaa jo hyvan aikaa sitten. Pahimmassa tapauksessa
jotkut komponentit on viela kirjoitettu kielelld, jota juuri kukaan tdmanhetkisista tyontekijoista ei osaa. Suurin
osa projektista kuluu vanhan koodin lapikdymiseen ja testaamiseen, bugien etsimiseen ja joidenkin osuuksien
uudelleenkirjoittamiseen. Varsinaiset uudet ominaisuudet laaditaan hirveassa kiireessa, osa parametreista
kovakoodataan ja valiaikaiseksi tarkoitettuja ns. purukumipaikkauksia latkitdan sinne tdnne. On sanomattakin
selvaa, ettd kommentointi jaa taas tekematta. Hirvittavan ylitydrupeaman jalkeen ohjelmisto saadaan
toimitettua asiakkaalle ajallaan, ja kaikki tyontekijat pitdvat sormiaan ristissa, etteivét joutuisi vastaamaan

yllapidosta tai saisi yhtakaan tukipyyntoa.

Kuvattu tilanne on valitettavan yleinen ohjelmistoalalla. Jokainen alan perusteos painottaa dokumentaation
tarkeytta, mutta silti se lilan usein jaa tekematta. Yleinen syy on kiire. Kun jokin ominaisuus pitaa saada
toimimaan mahdollisimman nopeasti, tuntuu, ettei samanaikainen koodin kommentointi vie asiaa eteenpain.
Kun ominaisuus on sitten saatu valmiiksi, rynnataan suin pain toteuttamaan seuraavaa ja jatetaan
dokumentaatio mydhempien aikojen murheeksi. Kommentointia ei kuitenkaan pida ajatella kehitysta
hidastavana tekijana. Ohjelmistoprojekti on aina yhteisty6ta, ja kommentit auttavat muita kehitystiimin jasenia
ymmartamaan, miksi kyseinen toteutustapa on valittu. Kehityksen aikainen kommentointi helpottaa myods
tekijaa itsedan jasentelemaan ajatuksiaan. Luultavasti seuraavalla viikolla tekija itsekin saattaa olla unohtanut
kehityksen aikaisen ajatuksenjuoksunsa. Hyvin usein avokonttoreissa voi kuulla lauseen: "Mitahan olen

tuossakin ajatellut?”

Toinen yleinen syy on veteen piirretty viiva tyovaiheessa olevan ja valmiin ominaisuuden valilla. Kehittéja
saattaa ajatella, ettei viitsi kommentoida koodiaan niin kauan kuin se on tydvaiheessa, silla kaikkihan voi viela
muuttua. Testivaiheessa oleva koodinpétka voi kuitenkin muuttua lopulliseksi versioksi yllattavan nopeasti sen
saavutettua riittava toiminnallisuus eika kehittgja valttamatta rekisteroi tatéa, vaan siirtyy vain vaiheittain
kehittdm&éan seuraavaa ominaisuutta. Nain aiempi koodinpatka seka sen kommentointi unohtuvat

ajankohtaisempien ongelmien tayttdessa mielen.

Projektipaéallikbiden tulee myds muistaa, ettd dokumentointi on olennainen osa ohjelmistokehitysta, ja
budjetoida myos sille aikaa. Parasta olisi varmistaa tama viikoittain erillisten osasten valmistuessa.
Viimeistdan projektin loputtua tulee varmistaa, etta koodi on riittdvan hyvin kommentoitu ja erillinen
dokumentaatio kayttdohjeineen on laadittu. T&méa helpottaa yll&pitoa ja muuttaa hiljaisen tiedon nékyvaksi.


https://lehti.seamk.fi/alykkaat-ja-energiatehokkaat-jarjestelmat/dokumentaation-puute-ohjelmistokehityksen-akilleen-kantapaa/
https://lehti.seamk.fi/alykkaat-ja-energiatehokkaat-jarjestelmat/dokumentaation-puute-ohjelmistokehityksen-akilleen-kantapaa/
https://lehti.seamk.fi/alykkaat-ja-energiatehokkaat-jarjestelmat/dokumentaation-puute-ohjelmistokehityksen-akilleen-kantapaa/

Pitéda aina muistaa, etta kone suorittaa koodia, mutta sita laatii ja lukee (ainakin toistaiseksi) ihminen.

Juha Hirvonen, SeAMK Tekniikka



