Asiakaslahtoinen
ohjelmistosuunnittelu ketterien
menetelmien yhteydessa

31.12.2021

Ketterilla ohjelmistonkehitysmenetelmilla tarkoitetaan menetelmid, joissa ohjelmistokehitys tehdaan pienina
tehtavina tai tytjaksoina ja vaatimuksia ja maarittelya tarkennetaan koko kehitysprojektin ajan. Talléin
projektin aikana ilmeneviin muutoksiin voidaan reagoida nopeasti ja keskittya aina olennaisiin asioihin.
Tyypillisia ketteria menetelmiéd ovat mm. Scrum ja Kanban. Scrum sopii ennalta sovittujen kehitysjaksojen
(Sprint) vuoksi hyvin uuden ohjelmiston kehittamiseen ja Kanban on kaytossa tyypillisesti sellaisissa
tilanteissa, joissa kehitysjakson tehtavia ei voida kiinnittéa esimerkiksi tiimille tulevien satunnaisten
yllapitotehtavien vuoksi.

Tehtavalista

Molemmissa edella mainituissa menetelmissa kaytetaan jatkuvasti projektin aikana paivitettavaa tehtavalistaa
(Product backlog), jossa paallimmaisend ovat aina prioriteetiltaan tarkeimmat tehtavat. Tarkoituksena on, etta
keskitytaan aina olennaisimpiin tehtaviin. Toisaalta prioriteetit voivat muuttua projektin aikana esimerkiksi
saadun palautteen perusteella.

Loppukayttajan tarpeet voivat tallaisessa tehtavalistassa kadota, kun tehtavakuvauksessa keskitytaan
ohjeistamaan suunnittelijaa. Viesti siitd mita loppukayttédja todella tarvitsee ei vality ja vaarinymmarrysten
mahdollisuus kasvaa.

Suunnitteluajattelu lahtokohtana

Yksi asiakaslahtoisyyden parantamiseen ketterien menetelmien yhteydessa esitetty toimintatapa on
suunnitteluajattelu, joka tarjoaa tytkaluja ja menetelmid tuotteen kayttdjan ymmartamiseen ja
asiakaslahtdiseen ongelmanratkaisuun.

Perinteisissa ohjelmistokehitysmenetelmissa loppukayttajan nakokulmaa on usein tuotu suunnitteluun
mukaan pohtimalla kayttotapauksia eli kuka ohjelmistoa tulee kayttdmaan ja miten. Suunnitteluajattelussa tata
viedaan pidemmalle pohtimalla perusteellisemmin loppukayttdjan nakékulmaa, pyrkimalla asettumaan taman

asemaan.

Kuviossa 1 on kuvattu suunnitteluajattelun prosessia. Prosessi koostuu viidesta eri vaiheesta: Kayttajan
tarpeiden havainnoiminen (Empathize), Kayttajan ongelmien maarittely (Define), Ratkaisujen ideointi (Ideate),

Prototyypin rakentaminen (Prototype) ja Ratkaisujen testaaminen (Test). Prosessi etenee lineaarisesti, mutta

https://lehti.seamk.fi/alykkaat-ja-energiatehokkaat-jarjestelmat/asiakaslahtoinen-ohjelmistosuunnittelu-ketterien-menetelmien-yhteydessa/
https://lehti.seamk.fi/alykkaat-ja-energiatehokkaat-jarjestelmat/asiakaslahtoinen-ohjelmistosuunnittelu-ketterien-menetelmien-yhteydessa/
https://lehti.seamk.fi/alykkaat-ja-energiatehokkaat-jarjestelmat/asiakaslahtoinen-ohjelmistosuunnittelu-ketterien-menetelmien-yhteydessa/

aikaisempiin vaiheisiin voidaan palata, jos todetaan etta ratkaisu ei toimi tai huomataan ettd on ymmarretty

jotain vaarin.

Understand Define Ideate Create Test Iterate
the User the Problem Solutions Prototype and Learn

Empathize Define N Ideate Prototype

Lifecycle : oo e by Takesd Yo, 208

Kuvio 1. Suunnitteluajattelun prosessi.

Tasmallisemmat tehtavakuvaukset

Ohjelmistokehityksessa toimitusketju voi toisinaan olla hyvin pitk&d. Esimerkkina yritys A myy
ohjelmistotuotetta asiakasyrityksille, joiden tydntekijat ovat sovelluksen loppukayttgjia. Yritys A ostaa
ohjelmistokehityksen yritykselta B, jolla edelleen voi olla alihankkijoita, joiden tydntekijat suorittavat
varsinaisen ohjelmistokehityksen. Talldin ohjelmiston loppukéyttajan ja ohjelmistokehittajan valilla on monta
porrasta ja tiedonkulun ongelmat voivat johtaa siihen, etta ratkaisut eivat taysin vastaa sita, mita ketjun

loppupédassa odotetaan.

Ajatuksena on, ettd prosessia kaytetdan soveltuviin tehtavalistan tehtéviin ja saadaan niiden tehtavakuvausta
laajennettua vastaamaan paremmin todellista tarvetta. Menetelmaa voidaan kayttaa esimerkiksi
kehitysjaksojen valissa parantamaan seuraavaan kehitysjaksoon tulevien tehtavien kuvauksia. Nain voidaan
varmistaa, etta seuraavaksi toteutettavien ominaisuuksien kanssa mennaan varmasti oikeaan suuntaan ja

loppukayttajan tarpeet tulevat huomioiduiksi.

Asiakaslahtdisessa ohjelmistosuunnittelussa oleellista on se, ettd ymmarretdan ohjelmiston loppukayttajan
tarpeet ja osataan asettua suunnittelutytssa loppukayttajan asemaan. Ohjelmistoprojekteja toisinaan
vaivaavat epaonnistumiset valtetddn saumattomalla yhteisty6lla ja halulla ymmartaa asiakkaan puolesta

ratkottavat ongelmat perin pohjin.

Juha Yli-Hemminki
Lehtori
SeAMK

Lahteita:

Try Design Thinking + Scrum. The Lean & Agile Practitioner | by Takeshi Yoshida | MediumThe New User

https://lehti.seamk.fi/alykkaat-ja-energiatehokkaat-jarjestelmat/asiakaslahtoinen-ohjelmistosuunnittelu-ketterien-menetelmien-yhteydessa/attachment/yli-hemminki/
https://coachtakeshi.medium.com/design-thinking-plus-scrum-d671a1a8e67a
https://www.jpattonassociates.com/the-new-backlog/

Story Backlog is a Map — Jeff Patton & Associates (jpattonassociates.com)Design Thinking Bootleqg —

Stanford d.school

https://www.jpattonassociates.com/the-new-backlog/
https://dschool.stanford.edu/resources/design-thinking-bootleg
https://dschool.stanford.edu/resources/design-thinking-bootleg

