
Asiakaslähtöinen
ohjelmistosuunnittelu ketterien
menetelmien yhteydessä
31.12.2021
Ketterillä ohjelmistonkehitysmenetelmillä tarkoitetaan menetelmiä, joissa ohjelmistokehitys tehdään pieninä
tehtävinä tai työjaksoina ja vaatimuksia ja määrittelyä tarkennetaan koko kehitysprojektin ajan. Tällöin
projektin aikana ilmeneviin muutoksiin voidaan reagoida nopeasti ja keskittyä aina olennaisiin asioihin.
Tyypillisiä ketteriä menetelmiä ovat mm. Scrum ja Kanban. Scrum sopii ennalta sovittujen kehitysjaksojen
(Sprint) vuoksi hyvin uuden ohjelmiston kehittämiseen ja Kanban on käytössä tyypillisesti sellaisissa
tilanteissa, joissa kehitysjakson tehtäviä ei voida kiinnittää esimerkiksi tiimille tulevien satunnaisten
ylläpitotehtävien vuoksi.

Tehtävälista
Molemmissa edellä mainituissa menetelmissä käytetään jatkuvasti projektin aikana päivitettävää tehtävälistaa
(Product backlog), jossa päällimmäisenä ovat aina prioriteetiltaan tärkeimmät tehtävät. Tarkoituksena on, että
keskitytään aina olennaisimpiin tehtäviin. Toisaalta prioriteetit voivat muuttua projektin aikana esimerkiksi
saadun palautteen perusteella.

Loppukäyttäjän tarpeet voivat tällaisessa tehtävälistassa kadota, kun tehtäväkuvauksessa keskitytään
ohjeistamaan suunnittelijaa. Viesti siitä mitä loppukäyttäjä todella tarvitsee ei välity ja väärinymmärrysten
mahdollisuus kasvaa.

Suunnitteluajattelu lähtökohtana
Yksi asiakaslähtöisyyden parantamiseen ketterien menetelmien yhteydessä esitetty toimintatapa on
suunnitteluajattelu, joka tarjoaa työkaluja ja menetelmiä tuotteen käyttäjän ymmärtämiseen ja
asiakaslähtöiseen ongelmanratkaisuun.

Perinteisissä ohjelmistokehitysmenetelmissä loppukäyttäjän näkökulmaa on usein tuotu suunnitteluun
mukaan pohtimalla käyttötapauksia eli kuka ohjelmistoa tulee käyttämään ja miten. Suunnitteluajattelussa tätä
viedään pidemmälle pohtimalla perusteellisemmin loppukäyttäjän näkökulmaa, pyrkimällä asettumaan tämän
asemaan.

Kuviossa 1 on kuvattu suunnitteluajattelun prosessia. Prosessi koostuu viidestä eri vaiheesta: Käyttäjän
tarpeiden havainnoiminen (Empathize), Käyttäjän ongelmien määrittely (Define), Ratkaisujen ideointi (Ideate),
Prototyypin rakentaminen (Prototype) ja Ratkaisujen testaaminen (Test). Prosessi etenee lineaarisesti, mutta

https://lehti.seamk.fi/alykkaat-ja-energiatehokkaat-jarjestelmat/asiakaslahtoinen-ohjelmistosuunnittelu-ketterien-menetelmien-yhteydessa/
https://lehti.seamk.fi/alykkaat-ja-energiatehokkaat-jarjestelmat/asiakaslahtoinen-ohjelmistosuunnittelu-ketterien-menetelmien-yhteydessa/
https://lehti.seamk.fi/alykkaat-ja-energiatehokkaat-jarjestelmat/asiakaslahtoinen-ohjelmistosuunnittelu-ketterien-menetelmien-yhteydessa/

aikaisempiin vaiheisiin voidaan palata, jos todetaan että ratkaisu ei toimi tai huomataan että on ymmärretty
jotain väärin.

Kuvio 1. Suunnitteluajattelun prosessi.

Täsmällisemmät tehtäväkuvaukset
Ohjelmistokehityksessä toimitusketju voi toisinaan olla hyvin pitkä. Esimerkkinä yritys A myy
ohjelmistotuotetta asiakasyrityksille, joiden työntekijät ovat sovelluksen loppukäyttäjiä. Yritys A ostaa
ohjelmistokehityksen yritykseltä B, jolla edelleen voi olla alihankkijoita, joiden työntekijät suorittavat
varsinaisen ohjelmistokehityksen. Tällöin ohjelmiston loppukäyttäjän ja ohjelmistokehittäjän välillä on monta
porrasta ja tiedonkulun ongelmat voivat johtaa siihen, että ratkaisut eivät täysin vastaa sitä, mitä ketjun
loppupäässä odotetaan.

Ajatuksena on, että prosessia käytetään soveltuviin tehtävälistan tehtäviin ja saadaan niiden tehtäväkuvausta
laajennettua vastaamaan paremmin todellista tarvetta. Menetelmää voidaan käyttää esimerkiksi
kehitysjaksojen välissä parantamaan seuraavaan kehitysjaksoon tulevien tehtävien kuvauksia. Näin voidaan
varmistaa, että seuraavaksi toteutettavien ominaisuuksien kanssa mennään varmasti oikeaan suuntaan ja
loppukäyttäjän tarpeet tulevat huomioiduiksi.

Asiakaslähtöisessä ohjelmistosuunnittelussa oleellista on se, että ymmärretään ohjelmiston loppukäyttäjän
tarpeet ja osataan asettua suunnittelutyössä loppukäyttäjän asemaan. Ohjelmistoprojekteja toisinaan
vaivaavat epäonnistumiset vältetään saumattomalla yhteistyöllä ja halulla ymmärtää asiakkaan puolesta
ratkottavat ongelmat perin pohjin.

Juha Yli-Hemminki
Lehtori
SeAMK

Lähteitä:

Try Design Thinking + Scrum. The Lean & Agile Practitioner | by Takeshi Yoshida | MediumThe New User

https://lehti.seamk.fi/alykkaat-ja-energiatehokkaat-jarjestelmat/asiakaslahtoinen-ohjelmistosuunnittelu-ketterien-menetelmien-yhteydessa/attachment/yli-hemminki/
https://coachtakeshi.medium.com/design-thinking-plus-scrum-d671a1a8e67a
https://www.jpattonassociates.com/the-new-backlog/

Story Backlog is a Map – Jeff Patton & Associates (jpattonassociates.com)Design Thinking Bootleg —
Stanford d.school

https://www.jpattonassociates.com/the-new-backlog/
https://dschool.stanford.edu/resources/design-thinking-bootleg
https://dschool.stanford.edu/resources/design-thinking-bootleg

